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I n  a recent paper (Jansons & Johnson 1988) the authors discuss topographic Rossby 
waves over a random array of seamounts. It is noted that resonance is possible 
between a hill and an equal and opposite dale but such resonances are mentioned 
only briefly due to the small likelihood of correctly matched topography in the ocean. 
The present paper considers the resonances in detail showing how the normal modes 
formed by frequency splitting a t  resonance can be combined to give modes that 
slowly transfer energy from one region supporting topographic waves, across a region 
where such waves are evanescent, to another region supporting waves. In addition 
to the simplest case of a hill-dale pair for which an exact energy-transferring mode is 
obtained, transferring modes are given for a three-hill system, for two hills near a 
coastal boundary, and for two-basin lakes. The analysis is simplified and the results 
generalized by extensive use of the invariance of the governing equation under 
conformal mappings. A transferring mode is given for a dale in a random array of 
seamounts showing energy leaking slowly from the dale to large distances and 
returning, with the rate of leakage depending on the area fraction of seamounts. It 
is concluded that although resonances and transferring modes are not likely to be 
important in random arrays on infinite planes, they are relevant to numerical 
models, which are necessarily restricted to finite domains, to coastal seamount chains, 
and to multi-basin lakes. 

1. Introduction 
In a recent paper (Jansons & Johnson 1988, hereinafter referred to as I) the 

authors discuss the topographic Rossby waves over a seamount in the presence of one 
or more neighbouring seamounts. These waves are the normal modes of oscillation of 
a homogeneous fluid in the oceanographic limit of slow flow (relative to rapidly 
rotating axes) over obstacles of small slope and horizontal scale of order the fluid 
depth or larger, and are governed by the linearized barotropic potential vorticity 
.equation (Rhines 1969). It is shown in I that in a two-mountain system the field seen 
by one mountain due to the second appears to rotate in the opposite direction to the 
natural mode of the first and so lies far from resonance. Resonance occurs between 
a hill and dale (i.e. hill of negative height) of equal and opposite heights. Such exactly 
matched pairs are extremely unlikely in randomly selected topography on an infinite 
plane, and so were mentioned only briefly in I. Resonances are, however, more likely 
in bounded domains where the boundary introduces exact images of the real 
topography. Thus seamount chains near continental margins and multi-basin lakes 
can exhibit resonances. Moreover, the necessary restriction of numerical com- 
putations to finite domains increases the likelihood of resonance. The frequency of a 
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resonant system is split from the natural frequency of the components in isolation to 
a higher, ' + ', and lower ' - ', frequency, with the magnitude of the splitting varying 
inversely as the strength of the coupling. A linear combination of the ' + ' and ' - ' 
modes gives a beating mode in which energy is slowly transferred from one 
component of the system to the other. This paper presents various geometries 
exhibiting transferring modes, relying extensively on the invariance under conformal 
mappings of the topographic-wave equation (Johnson 1987 b )  and in particular on 
invariance under the bilinear or Moebius transformation of inversion with respect to 
a circle. 

Section 2 gives the simplest example - a hill-dale pair. An exact solution is 
constructed in terms of bipolar coordinates and an approximate solution shows that 
at  large separation (formally, although in practice one radius separation is sufficient) 
the slow transferring motion has frequency w1 = wQ/d2, where d is the separation of 
centres and wQ the frequency of either the hill or dale in isolation. Section 3 discusses 
resonances in three-mountain gystems, giving two samples of transferring modes, one 
requiring two of the mountains to be of almost equal height and the other for 
mountains of differing height. Section 4 gives the solution for a dale in a random 
array of equal and opposite hills. This transferring mode would be absent from an 
analysis based on the technique reviewed in LeBlond & Mysak (1978) of linearizing 
the random topography about a non-random mean topography. Section 5 discusses 
the consequences of these results for numerical experiments, and observations in 
two-basin lakes. 

2. A hill-dale pair 
The simplest system exhibiting the slow transfer of energy from one region to 

another consists of a hill and dale of equal and opposite heights. This section gives 
a brief derivation ofa slow mode using first the far-field approximations of I and then 
the exact solutions. Note from I that the stream function at x due to a right circular 
mountain m, = (x , ,H , )  of height H ,  with centre x,, subject to forcing by the 
incident stream function given by the rotating unit vector 

1 = (a-ig) exp (iwt), 

is V @ ( x ; m , ; I )  = A(w/H,)Z.T(x-x,),  (2.1) 

A ( w / H , )  = (2w/H,  - l)-', 

where the amplitude A is a function of w/H,  alone, 

(2.2) 

and 1 ( r  < 1) 
(1 -2ff))lr2 ( r  > 1).  

T(r)  = 

The leading-order approximation to the field due to two seamounts m, and m, can 
thus be written 

V@fX ; m, ; 4 + V@(X ; m, ; vv+, ; m, ; 1). (2.4) 

For a mountain of height H and dale of depth - H  consistency (see I)  gives the two 
roots 

w* =w,(lfd-2+ ...), (2.5) 

where d is the separation of centres and wQ = 1 3  is the common frequency of either 
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the hill or dale in isolation (ignoring signs). This frequency is split by resonance, with 
finer splitting at  larger separation. Since 

A(w+/H) - = + d 2 ,  

the two normal modes are 

I V$+ = 1,- T(x)+Z?. T ( x - x , ) ,  

v$- = I .  T ( x ) - t .  T(x -x , ) ,  

where I ,  - = ($.+if) exp(iwt) 

and lR = d21-T(x,)  = 1*(1-221$1)  is the reflection of 1 in a line perpendicular to 
2,. Streamlines of the exact solutions for these modes are given in I. 

The average of modes (2.6) gives a beating mode, in which the majority of the 
activity is initially in the neighbourhood of the origin, i.e. 

$(V$+ + V@-) = +(l+ + I ) .  T ( x )  +t( l+  - l - ) R .  T ( x - x 1 )  

= 1, - T ( x )  cos w1 t + i1,- T ( x  - x,) sin w1 t, (2.7) 

where Z, = (2 - iy”) exp (iw, t )  and w1 = w,/d2. For large separations w1 is small and the 
motion consists of a topographic wave of temporal period 4n/H initially above the 
mountain at  the origin, transferring its energy to the dale at  x1 and back with period 
4nd2/H. The larger the separation the slower the transfer. 

Explicit exact solutions for energy-transferring modes in two-mountain systems 
follow from the exact solutions of the Appendix to I. Introduce bipolar coordinates 

a sinh E a sin0 
coshE-cos8’ = coshf[-cos8 

2 =  

and consider right-circular seamounts of heights H ,  and H, bounded by 5 = 6, and 
= 5, (El > to). The normal modes are given by 

$ = F(6) cos(mO+wt), (2.9) 

where m is the azimuthal wavenumber (a positive integer), 

exp [ 4 E - 5 0 ) 1  (5 G 60) 

WJ = exp [m(5- 50)I - (Ho/w) sinh [m(E - E0)I  ( E o  G E G El)  (2.10) 

{exP[m(E,-50)1-(Ho/~) ~ ~ ~ ~ [ ~ ~ E 1 - ~ 0 ~ 1 ~ ~ ~ P E ~ ~ E 1 - 5 ~ 1  ( E  2 El)? 

(1 - 2w/H,)  (1 + 2w/H1) = p 4 m ,  (2.11) 

l 
and w satisfies the dispersion relation 

where p = exp [+(El -to)]. The two roots are 

w +  - = ( H o - H 1 ) / 4 _ + d ,  (2.12) 

where A 2  = a(Ho +H$ - H ,  H ,  prm. The discriminant A measures the closeness of 
the two frequencies. For a given H ,  > 0, a hill-hill pair, the frequencies tend to zero 
as the hill separation decreases. For H ,  < 0, a hill-dale pair, the frequencies become 
progressively closer as the separation increases (see I). The strongest resonance for a 
given separation occurs for H, = -Ho  = - H  (say) when wk = wo(l  _+fFm),  where, as 
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O o  0 0 0 0 
FIGURE 1. Four bathymetries related by inversion in an appropriate circle and so having the same 
topographic-wave structure. (a) Two circles of equal radius; ( b )  two circles of differing radius; ( c )  
a circle and rectilinear escarpment; (d) one circle within another. If topographies with these 
contours are taken to be a hill and dale in (a), ( b ) ,  and (c) and to be two hills or two dales in (d ) ,  
then the systems will manifest energy-transferring modes when the step heights are sufficiently 
close. 

above, w, = 1 8  is the frequency of the hill or dale in isolation. Again the average of 
the modes gives a flow field with slow transfer of energy between the hill and dale. 
The stream function is 

sin (mO+ w, t )  sin w1 t exp [ m ( f -  to)] (5 G t o )  
{sin (mB+w,t) sinw,t sinh[m(f,-t)] (j +COS (mB+w,t)  cosw,t sinh[m(~-g,)l~/sinh[m(fl-fo)l (go G 6 G 5,) 
cos(mO+w,t) cosw,t exp [--rn([-[,)], (5 2 

(2.13) 

where w1 = w,/pzm. Resonance can occur for any radii of the topographic features 
(depending solely on the difference f l - f o )  and energy transfer for any azimuthal 
wavenumber. The higher the mode number and the greater the difference t1 -to, the 
slower the energy transfer. Figure 1 shows three hill-dale pairs with the same value 
of f l  - f ,  and thus related by inversion in an appropriate circle. Figure 1 (a) shows two 
circles of equal radius, figure 1 (c) a circle and rectilinear escarpment, and figure 1 ( b )  
an intermediate case. Figure l ( d )  is an example of one contour within another, 
corresponding to a hill with two interior heights. By conformal invariance, all exhibit 
the same transferring mode. 

To compare with the far-field results consider two unit-radius circles with centres 
d apart. Then 6, = - f l  and (see I)  

p = exp (to) = ;a+ [(@)2 - 11;. 

At large separations /3 x d and so for the dipole mode w1 x w, d?, in agreement with 
(2.7) above. Figure 2 shows streamlines for d = 8.125 for which w, = and w1 = A. 
The patterns are for t = 0,0.5x, IC, 32n, 32.5x, 33n, 64x, 6 4 . 5 ~  and 65n, corresponding 
to three consecutive one-eighth-period intervals of the rapid frequency a t  three 
consecutive one-eighth-period intervals of the slow, transfer frequency. Figure 2( a )  
shows the field rotating anticlockwise above the dale, figure 2 ( b )  shows it evenly 
distributed between hill and dale, and figure 2 (c), rotating clockwise above the 
hill. 

Figure 3 shows streamlines for a hill of interior heights unity and two. The outer 
radius is unity, the inner & 4 6  NN 0.19, and the centres are offset by & 4 6 .  This 
corresponds to p = 2 d 6  and d = d6, so wo = and w1 = &. As in figure 2 ,  the 
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FIGURE 2. Streamlines for a hill and dale, both of unit height and radius with centres a distance 
8.125 apart. The period of oscillation of either in isolation is 4x. The period of the slow transferring 
motion is 256x. The plots are at three consecutive one-eighth-period intervals of the rapid 
frequency a t  three consecutive one-eighth-period intervals of the slow frequency, i.e. a t  times (a) 
(i) 0, (ii) 0.5x,  (iii) x ,  with the disturbance rotating anticlockwise above the dale; (b )  (i) 32n, 
(ii) 32.5x, (iii) 33x, evenly distributed between hill and dale; and (c) (i) 64n, (ii) 64.5x, (iii) 65x, 
rotating clockwise above the hill. 

patterns are a t  three consecutive one-eighth-period intervals of the rapid frequency 
a t  three consecutive one-eighth-period intervals of the transfer frequency. For the 
present geometry these are the times t = 0, 0.5n, n, 12z, 12.5n, 13n, 24n, 2 4 . 5 ~  and 
25n. Figure 3 ( a )  shows the field rotating anticlockwise, concentrated over the outer 
contour, figure 3 (b)  shows the field distributed among the contours, and figure 3 ( c )  
shows it rotating anticlockwise above the interior contour. Transferring modes for 
two height hills can, of course, be demonstrated most simply for concentric circular 
contours using polar coordinates. 

Although the heights of the hill and dale in these examples are precisely matched, 
the form of w1 shows the strength of the resonance will be unaffected if H ,  differs from 
- H ,  by order d-2.  Moreover, the analysis of Johnson ( 1 9 8 7 ~ )  extends straight- 
forwardly to the present geometry, giving solutions for finite-amplitude continuous 
topography. At large separations these solutions appear locally like the modes over 
smooth axisymmetric hills (e.g. Rhines 1969), with an additional wavenumber giving 
an oscillating radial structure to the solution above the sloping sides of the hill and 
dale. 
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(iii) 

(iii) 

(9 (ii) (iii) 

(c) 

FIGURE 3. As for figure 2 but for a hill of interior heights unity and two. The outer radius is unity, 
the inner 0.19, and the centres are offset by 0.19. The period of oscillation over either escarpment 
is 4 ~ .  The period of the slow transferring motion is 9 6 ~ .  The plots are at three consecutive one- 
eighth-period intervals of the rapid frequency at three consecutive one-eighth-period intervals of 
the slow frequency, i.e. a t  times ( a )  (i) 0, (ii) 0 . 5 ~ ,  (iii) R ,  with the disturbance above the outer 
contour; ( b )  (i) 12x, (ii) 12.571, (iii) 1 3 ~ ,  evenly distributed between the contours; and ( e )  ( i )  2 4 ~ ,  (ii) 
2 4 . 5 ~ ,  (iii) 25n, above the inner contour. 

3. Three-hill systems 
Normal modes of form (2.4) and (2.10) for a pair of identical hills have the same 

frequency, with each field concentrated over one hill causing a counter-rotating flow 
over the other. They are degenerate : any linear combination of the two being another 
normal mode of the same frequency (figure 6 a ) .  They are also far from resonance and 
so a system of hills without dales needs a t  least three hills to exhibit energy- 
transferring modes. To show that three are sufficient consider three arbitrarily 
spaced non-intersecting hills, two of the same height and the third different. As the 
modes of oscillation above the third are not resonant with those of the pair, the 
qualitative behaviour is unchanged if the third hill is replaced by an island. To justify 
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FIGURE 4. Three equivalent geometries related by inversion. ( a )  Two hills and an island; (b )  a two- 
basin lake; (c) the canonical form, chosen so that the hill centres are each a distance d from the 
island centre. Any three non-intersecting circles can be conformally mapped so that their centres 
are collinear although their radii will in general alter. 

this replacement note that the modification to the frequency above a hill of height 
H ,  due to the presence of a hill of height H ,  is given in I, under the far-field 
approximation, as 

o = w,[l- ( 1  +H,/H,)-W* + . . -1, (3.1) 

with d the separation, as before. The factor multiplying d-* varies from t to  unity as 
H ,  increases from H ,  to infinity; the expression is otherwise unchanged. Similar 
changes are expected with more realistic topographies. The system of three circles 
can be mapped to a canonical system where the centres are collinear and the hill 
centres are equidistant from the island. This follows by noting that there is a unique 
circle orthogonal to any three non-intersecting circles and that inversion with respect 
to a circle centred on this orthogonal circle preserves circles and orthogonality, thus 
placing the centres of the three original circles on a straight line (figure 4). Such 
systems are in general non-resonant. Two cases in which the system is resonant and 
has transferring modes are considered below. 

Consider first the case where the two hills have equal radii in the canonical system. 
Take unit-radius hills with centres a distance d either side of the island centre. By 
inverting with respect to the circle orthogonal to the hills with centre on the island 
boundary equidistant from the hills, the system is mapped into one consisting of two 
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FIGURE 6. A schematic representation of the modes above a hill-hill pair. The directions of the 
dipoles, both of which rotate clockwise with angular velocity close to wo (see text), are represented 
by thickened arrows. ( a )  For an isolated pair the relative orienbation of the dipoles is arbitrary. 
When an island is present, mapped here to an infinite rectilinear boundary, this degeneracy is 
removed. ( b )  The ' + ' mode with dipoles parallel, (c) the '- ' mode with dipoles antiparallel. 

unit-radius hills on a semi-infinite plane. To leading order in the small parameter 
d-l the hills are separated by a distance 2d and are both a distance Bd2 from the 
boundary of the plane (figure 5 a ) .  The presence of the island or wall removes the 
previous degeneracy of the hill-hill pair. The corotating dipoles can no longer differ 
by an arbitrary phase and two distinct eigenmodes appear - a parallel or ' + ' mode 
in which the dipoles are in phase (figure 6 b )  and an antiparallel or '- ' mode in which 
the dipoles are out of phase by x (figure 6c). 

The solid boundary is accommodated by introducing the images in the boundary 
of the hills. This gives the two-hill-two-dale system of figure 5 ( b ) .  The frequencies 
follow from a modified form of the argument leading to (33) of I. The forcing over the 
image dale corresponding to a forcing 1 over a hill is the reflection lR from (2.6), where 
in this case x1 is the displacement of the dale from the hill. This disturbance lR in turn 
makes a contribution a t  the hill of 

A ( w / h ) l R - T ( - x l )  = A ( o ~ / H ) l d - ~ .  (3.2) 

In the ' + ' mode the other dale makes the same contribution to leading order in d-I, 
as to this order the displacements of both dales from a given hill are the same. As 
in I, the second hill gives a contribution 

A ( ~ / H ) A ( - ~ / H )  ( a i - 4 1 .  (3.3) 

Thus the consistency condition for the '+ '  mode is 

~ A ( u + / H ) ~ - ~ + A ( ~ + / H ) A (  - ~ + / H ) ( 2 d ) - ~  = 1, 

i.e. l - Z w + / H  = [ 2 - ( 1 + 2 w + / H ) - 1 / 1 6 ] d - 4 .  (3.4) 

Substituting the leading-order solution wo = 
correction : 

in the right-hand side gives the first 

w+ = wo(i +3d4+. . .). (3.5) 

I n  the '-' mode the image contributions cancel to leading order leaving only 
contribution (3.3). Thus 

1 -2w-/H = - (1 +2w_/H)-' /16d4,  (3.6) 

giving the first correction : 

0- = w o ( l  - ~ 4 + .  . .). (3.7) 
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FIGURE 7. Two unit-radius hills near a solid rectilinear wall. If system-0 consisting of mountain 
H ,  and its image dale has the same frequency in isolation as system-1 consisting of mountain H ,  
and its image dale, then the coupled system shows resonant splitting of this common frequency 
and has modes slowly transferring energy between system-0 to  system- 1. The basic frequency is 
wo = lgo(l +db2)  = Lal(l +dy2)  and the transferring frequency is w1 = ;(HI H,)k/D2. This mode does 
not require the hills to be of the same height. 

Unlike the hilldale system the frequency splitting by resonance in the three-hill 
system is not symmetric about wo. 

As in the previous examples, the average of these modes gives a transferring field 
initially concentrated above one hill but slowly moving to the other. The frequency 
of the oscillation above a given mountain is increased from oo to 

$(w++w- )  = w o ( l + W +  ...). (3.8) 

The frequency of energy transfer, i.e. the beat frequency, is 

(3.9) &+ 1 - 0-) = Wo/d4 + . . . , 
decreasing far more rapidly with increasing separation than in the hilldale example 
of the previous section. 

The example above demonstrates the simplest three-hill resonance. Resonance is 
not, however, restricted to systems with hills of the same height. Consider the system 
in figure 7 consisting of two hills mo(xo,Ho) and m,(x , ,H, ) ,  a t  distances $do and &, 
respectively from a rectilinear solid boundary, with centres separated by a distance 
D, where do and d, are of order d + 1 and d < D < d2. If system-0 and system-1 have 
the same frequency in isolation then the coupled system is resonant. This coupled 
system is, of course, related to the canonical three-mountain system by inversion 
with respect to a suitably chosen circle. Introduce the notation 

I” = l o . ( 1 - 2 f 4 ,  P = lo-(1-29J7) (3.10) 

for the reflections of I in lines perpendicular respectively to the x- and y-directions 
and denote the image dales by m: and my. Figure 8 shows diagrammatically, to 
leading order in d / D ,  the interaction between system-0 and system-1. The forcing 
above mi corresponding to 1 above ma is the reflection P. This dale forces most 
strongly the mountain m, giving a forcing in the direction P” = - 1  over m,. The 
corresponding forcing over the dale my is in the direction -P. This forces most 
strongly the mountain ma, giving a forcing there with direction - P” = 1, as required. 
It can be shown using the exact directions for the reflections that there is no phase 
change to any order in d / D  introduced in passing round the interaction diagram. To 



10 K .  M .  Jansons and E .  R .  Johnson 

FIGURE 8. A schematic representation of the directions of the dipoles in the resonant mode of 
the system described in figure 7. 

obtain the flow field explicitly, let the forcing a t  ma be 1, and at m, be 1,. Then the 
resonant interaction is given by 

1, = V$(x, ; m! ; 6) + V$(xo ; my ; S),l 
1, = WX, ; mt ; c) + v$(x, ; my ; 5). J 

Substituting for Q$ from (2 .1)  gives 

A ,  C?' A ,  A ,  v A ,  c?' 
lo = - +- D 2  3 k = - -  +-, 

D2 d: d; 

where A ,  = A ( o / H , ) .  Hence 

A , d i 2  - A I D p 2  1, (t) = ( -A ,D-2  A,dY2 )(Z)' 

Non-trivial solutions to this system require 

( A o d , 2 - l ) ( A l d ; 2 - 1 )  = A 0 A , D - 4 .  

Substituting for A ,  from ( 2 . 2 )  gives 

[ w - f l o ( l  +d,2)][w-1pY1(1 + d 3 ]  = 9 , H , 0 - 4 .  

Now system-0 and system-1 have the same frequency w* in isolation so 

W* = I i , ( l  + d i 2 )  = 18,(1 +dT2), 

and (3.15) becomes (w-w*)Z = + H 0 H , 0 - 4 ,  

i.e. w = o*+$(H,H,)fD-2.  

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

There is resonant splitting of the frequency, symmetric about w = w* .  Substituting 
(3.17) in (3.13) gives the ratios of the dipole strengths over the two mountains, 

(3.18) 

As in the first example, the relative orientation of the dipoles over the hills is arbitrary 
when they are isolated. When the hills interact the orientation is restricted to either 
a ' + ' mode, of frequency higher than w*,  in which the dipoles are parallel or a ' - ' 
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mode, of frequency lower than w * ,  in which the dipoles are antiparallel. In the 
present example the strengths of the dipoles differ if the hills have different heights, 
the stronger dipole lying over the higher mountain. 

The average of the modes gives a transferring mode with rapid frequency oo = w* 
and slow, transferring frequency w1 = $(H,  Hl)k/D2, depending on the geometric 
mean of the mountain heights. 

The restriction that do and d, are large, and so H ,  and H ,  close, can be relaxed by 
using the exact solution for system-0 and system-1 obtained by solving the forced 
problem for a hill near a rectilinear boundary in terms of bipolar coordinates. The 
form of the solution would be unaltered. 

4. Resonant systems containing many mountains 
The analysis of I can be extended to demonstrate resonance in a system containing 

many mountains and dales. The simplest example is of a hill surrounded by a haze 
of equal and opposite dales or, equivalently, a dale surrounded by a haze of equal and 
opposite hills. Results are presented below for the case of a dale as this is the more 
likely occurrence owing to the comparative rarity of deep hollows on the ocean floor. 
The consistency relation for a dale of depth - H o  surrounded by N hills of height 
H ,  follows from equation (30) of I as 

Substituting from (2.2) for A gives 

where ri is the distance 
correction to the natural 

2w 
rt + O ( r 3 1 ,  

of mountain i from the origin. Thus the leading-order 
frequency of the dale is given by 

N 

w = - ~ , [ ~ ~ {  i=1 C r r f+o ( r ;6 ) r ] .  (4.3) 

There is symmetric splitting about the natural frequency wo = -I&, and energy is 
transferred between the dale and the surrounding hills with frequency 

0, = ..{; .:)i. 
i-1 

(4.4) 

The ensemble average frequency for an infinite system of mountains follows by 
replacing N by infinity in (4.4) and taking an ensemble average over all systems 
having a dale identical to mo at the origin. This gives 

(4.5) 

with the subscript 0 indicating that all subscript-0 quantities are held constant in the 
averaging. As in I, the ensemble average of the sum can be written 

( rf), = [ T - ~ P ( ~  10) 2nr dr, 
i=l 
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where P(r 10) is the probability of finding a mountain a t  distance r given there is a 
dale at the origin. Distribution P ( r J 0 )  includes no contribution from m, and for 
simplicity is taken to be isotropic. 

Consider the special case where the pair probability density function is given 
by 

0, r < a  

n, r 2 a ,  
P(YI0) = (4.7) 

where n is a constant number density and a is supposed to be much larger than the 
radius of a mountain and much less than the typical distance between mountains. 
Then 

( w ) ,  = - ~ ~ , ( l * c ~ / a + O ( c ~ / a 2 ,  c)), (4.8) 

where c = xn is the area fraction of mountains. There is symmetric splitting about 
wo = -lao and energy is transferred from dale to the surrounding haze of equal and 
opposite mountains with frequency 

(4.9) 

This analysis can be continued following I to determine the effective topography 
for the ensemble-averaged stream function. For the distribution given by (4.7) the 
effective topography consists of the original dale together with a further upward step 
a t  a distance a from the origin. The transferring-mode stream function thus 
resembles that of figure 3, with, however, the outer contour a t  a %- 1. The field is 
initially concentrated far from the origin (figure 3a) ,  then moves to  be concentrated 
over the dale (figure 3c ,  with direction of rotation reversed) and so on. It should be 
noted that the method of linearizing about a background topography (as reviewed 
in LeBlond & Mysak 1978) would fail to obtain this transferring mode. 

( W J ,  = w , c i / a + .  . . . 

5.  Discussion 
It has been shown that slow energy transfer can occur between widely separated 

regions supporting topographic waves on an otherwise flat plane, a phenomenon akin 
to the tunnel effect of quantum dynamics in which energy travels slowly across 
forbidden regions between accessible states. The hilldale pair of $ 2  gives the 
simplest example, relating resonant frequency splitting to  slow transferring modes 
and allowing explicit solution. Section 3 shows that resonance in systems consisting 
only of hills requires the height and positioning of the hills to satisfy rigorous 
restrictions. Resonance is rare in arbitrarily chosen systems, and thus is not expected 
to be an important effect in an infinite ocean (see I). However, in a strongly bounded 
domain, one in which topography is present near the walls of the domain, the images 
introduced by the boundary make resonance more likely. This is particularly 
relevant to numerical experiments on topographic waves. The experiments are 
necessarily on a bounded domain with either rigid or periodic boundary conditions, 
both of which introduce the image system of the topography. For symmetrically 
placed hills of equal \heights (so that they have the same frequency in isolation) 
resonant splitting introduces slow, transferring modes. Such modes have been 
observed in numerical integrations (Rhines & Bretherton 1973). 

Geophysical examples of strongly bounded domains are given by seamount chains 
near continental margins and by two-basin lakes, like Lake Michigan. The latter are 
poorly described by existing analytical models of topographic oscillations in lakes 
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(e.g. Johnson 1987a), which either treat the two basins separately or ignore the 
barrier between the basins. The canonical hill-island--hill geometry of § 3 is converted 
to  a two-basin lake by inversion with respect to a circle within the island, thus 
demonstrating the possibility of modes which evolve slowly over time from being 
concentrated in one basin to being concentrated in the other. The reported depths of 
Lake Michigan in Saylor, Huang & Reid (1980) and Schwab (1983) show two basins 
each of depth around 160m below a basic lake depth of about 100m. Free 
oscillations of the basin could thus show a transferring mode. 

The solution in $4 for a dale in a random array of equal and opposite hills gives an 
example for which the techniques reviewed in LeBlond & Mysak (1978) fail to  give 
the transferring mode. 

This work was completed while one of us (E. R. J.) was the guest of Professor P. B. 
Rhines. It is a pleasure to thank him for his hospitality and support under grant 
OCE86-13725 from the National Science Foundation. 
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